INTRODUCTION TO STATISTICS

Semester No 2	Code STAT-103	Credit Hours 3-0
2553.61 110 2	3343 517 1. 136	ordan ridard v

COURSE OBJECTIVES:

- 1. Describe and apply the basic concepts of probability and statistics used for data representation and sampling
- 2. Use probability theory to analyze data for decision-making and for solving problems.
- 3. Estimate confidence intervals, hypothesis, quality control and probability to make decisions for industrial/engineering data

COURSE LEARNING OUTCOMES:

After completion of the course students will be able to:

- 1. Perform graphical profiling of data and analyzing patterns in univariate and multivariate data.
- 2. Perform quantitative profiling of univariate and multivariate data.
- 3. Use Induction to generalize from sample to population

PRESCRIBED TEXTS:

- 1. Advanced Engineering Mathematics, Erwin Kreyszig, 10th edition, Wiley Publishers, 2011
- 2. Douglas, A, L, Mason, Robert, D. M & Marchal, William, G "Basic Statistics for Business and Economics". McGraw-Hill 6th Edition, 2007.

REFERENCE MATERIAL:

- a. Paul Newbold, William L. Carlson & Betty Thorne. Statistics for Business & Economics, 8th Edition (Pearson-Prentice Hall), 2013.
- b. Wonnacott, Thomas H., and Ronald J. Wonnacott, 1990. *Introductory Statistics for Business and Economics*, 4th ed., Wiley.
- c. Haider, M. "Getting Started with Data Science: Making Sense of Data", IBM Press, Pearson, 1st Edition, 2016.

Prerequisites:

NIL

Course Description:

A first introduction to probability, statistics and machine learning. This course will provide background to understand and produce rigorous statistical analysis including estimation, confidence intervals, hypothesis testing, regression, logistic regression and a brief introduction to machine learning. Applicability and limitations of these methods will be illustrated using a variety of modern real world data sets and manipulation of the statistical software R. Precepts are based on real data analysis using R.

ASSESSMENT SYSTEM:

Quizzes	10-15%
Assignments	5-10%
Mid Term	20- 25
ESE	40-50%

Weekly breakdown of course contents is as follows:

Week	Topic	Quizzes	Assignments
	Descriptive statistics		01
	 Statistics vs. probability, sample vs population; Summary statistics: Mean, SD, Median, IQR; Graphical Summary: Pie Charts, Histograms, Box-plots 		
1	Lecture Notes 1(Link downloads document), Homework 1		

	Probability		01
2	 Sample space, event, probability Conditional Probability, Bayes's Theorem Independence Monte Carlo Simulations Lecture Notes 2(Link downloads document), Homework 2		
	Random variables and probability distributions	01	
3	 Random variables and probability distribution Expected values and standard deviation Probability density functions 		
4-5	Commonly used distributions		
	 Binomial distribution Hypergeometric, negative bionomial Poisson distributions Normal distributions Normal approximations to data histograms Exponential and Gammas distributions Quantile-Quantile plot Joint Distributions and Random Samples Discrete joint distribution Joint densities Covariance and correlation Multivariate random variables Square root law Central limit theorem 		
	Central mine dicorent		

	Consents on 1 Marks 1 - 4 P. d d.		
	Concepts and Methods of Estimation		
6	Point Estimation	01	
	Methods of Estimation		
	Standard error		
	Bootstrap		
	Бооізпар		
7	Estimation and Confidence Intervals		01
,	 Point Estimates and Confidence 		
	Intervals for known standard		
	deviation' or a Large Sample		
	Unknown Population Standard		
	Deviation and a Small Sample • A		
	Confidence Interval for a		
	Proportion, Finite-Population		
	Correction Factor, Choosing an		
	Appropriate Sample Size,		
8			
	Introduction of Hypothesis, Null and		
	Alternate Hypothesis, Hypothesis Testing		
	One-Sample Tests of Hypothesis		
	Testing a Hypothesis One-Tailed and		
	Two-Tailed Tests of Significance,		
	testing for a Population Mean with a		
	Known Population Standard Deviation		
	A Two-Tailed Test		
	One-Tailed Test		
	 p-Value in Hypothesis Testing 		
	Testing for Population Mean: Large		
	Sample, Population Standard		
	Deviation Unknown		
	Tests Concerning Proportions		
	Testing for a Population Mean: Small		
	Sample, Population Standard		
	Deviation		
	De l'accon		

9	MID-TERM		
---	----------	--	--

10	Introduction: Two-Sample Tests of Hypothesis: Independent Samples, Two- Sample Tests • Two-Sample Test of Hypothesis • Proportions, Comparing Population Means with Small Samples		
11	 Simple linear regression Models and summary statistics Estimation of model parameters Regression effect and goodness of fit Inference of model parameters Prediction Inference of Correlation 		
		01	
12	 Multiple and Nonlinear Regression Parameter estimation Variable Selection Statistical inference and ANOVA Model diagnostics Training and Testing Cross-validation and Prediction errors Polynomial and nonlinear regression Model building using dummies 		
	Expected Frequencies	01	
	Goodness-of-Fit Test: Equal Expected Frequencies		
14	Goodness-of Fit Test: Unequal		

15	 Introduction to Machine Learning Logistic Regression Supervised learning and Bayesian classifiers Fisher and nearest neighborhood classification Support vector machine 	01
	Unsupervised learning	
16	Presentations	
17	Revision	
18	END SEMESTER EXAMINATION	